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1 Introduction

Constrained Delaunay tetrahedralizations (CDTs) have many optimal prop-
erties similar to those of Delaunay tetrahedralizations (DTs) [8, 9]. They are
eligible structures for mesh generation.

A major task in constructing CDTs is how to recover the domain bound-
aries, i.e., edges and faces. At first hand, one might think it is an easy task since
it has been addressed intensively in the literature. Unfortunately, this problem
is far from being solved in 3D. Classical engineering algorithms [3, 12, 2] come
with no performance guarantee. Their details (involving swaps and point in-
sertions) are complicated to realize. On the other hand, CDT algorithms with
theoretical guarantees are proposed [6, 7, 11]. The algorithm [11] is available
in the program TetGen [10].

In this paper, we present a new algorithm for constructing CDTs for 3-
dimensional polyhedral domains. This algorithm is based on our previous
one [11]. A new facet recovery algorithm is proposed. It can handle facets
which are not exactly planar – a problem ubiquitously exists in engineering
data and the use of exact geometric predicates. We distinguish the inconsis-
tencies between 2 and 3 dimensional constrained Delaunay simplices. These
inconsistencies are removed by facet re-meshing and Steiner point insertions.
This algorithm has no complex detail and is easy to implement. It can be
extended to handle boundary consists of smoothly curved surfaces.

2 The Algorithm

The input is a 3D piecewise linear complex [4] (PLC) X , i.e., X is a collection of
polyhedra of dimensions up to 3, see Figure 1 left. We call 1- and 2-dimensional
polyhedra of X segments and facets. The boundary complex of X is its 2-
skeleton, which is the set of vertices, segments, and facets of X .
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Fig. 1. Left: A 3D PLC. Right: The surface triangulation of the facets of the PLC
with Steiner points inserted on its segments.

Our algorithm constructs a CDT T of X . T may contain Steiner points,
i.e., each segment and facet of X is represented by the union of a subcomplex
of T . We call 1- and 2-dimensional simplices of these subcomplexs subsegments
and subfaces to distinguish them from other simplices of T .

The proposed algorithm proceeds in the increasing order of the dimensions
of the skeletons of X . It is divided into three phases:

1. Create a DT D0 of the vertex set of X .
2. Let D1 = D0. Recover segments of X in a DT D1, refine X into X ′.
3. Let D2 = D1. Recover facets of X ′ in a CDT D2.

The first and second phases of this algorithm are already discussed in [11].
Steiner points are inserted in the segments of X such that every subsegments
are Delaunay in D1. A symbolic perturbation technique [6] is used to ensure
that the vertex set of D1 is in general position, i.e., no 5 points share a common
sphere. After the second phase, the original PLC X has been refined into a
PLC X ′ including Steiner points. It has been proven by Shewchuk [5] that the
CDT of X ′ exists. Facet can be recovered without Steiner points.

Shewchuk’s theorem [5] is based on an assumption that all vertices of the
facets are exactly co-planar. Unfortunately, it is commonly not the case in
the real world data and by the use of finite precision of computer’s floating
point numbers. Therefore, a new facet recovery algorithm is developed to
incorporate this situation. It is detailed in the following section.

2.1 Facet recovery

Every facet F ∈ X ′ is first triangulated into a 2-dimensional CDT TF , see
Fig. 1 right. F is recovered in a 3-dimensional CDT D2 when all its subfaces
are also faces of D2. The algorithm is summarized in Fig. 2.

From each missing subface σ one can form a missing region Ω which is a
set of subfaces such that: (i) the edges on the boundary of Ω are edges of D2,
and (ii) the edges in the interior of Ω are missing in D2.
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FacetRecovery (X ′, D1)
1. D2 := D1;
2. Initialize a queue Q of all subfaces of X ′;
3. while Q 6= ∅ do
4. pop a subface σ from Q;
5. if σ is missing in D2, then
6. form a missing region Ω containing σ;
7. search a set C of crossing tetrahedra of Ω;
8. if C 6= ∅ then
9. RemeshCavity(C, Ω);
10. if Ω is not recovered, then
11. RefineRegion(X ′, D2, Ω);
12. endif
13. else
14. RemeshRegion(D2, Ω);
15. endif
16. endif
17. endwhile
18. return D2;

Fig. 2. The facet recovery algorithm.

Facets with exactly co-planar vertices. In this case, the 2D CDT
of a facet F ∈ X ′ is unique viewed by all vertices of X ′. If a subface σ is
missing in the current tetrahedralization D2, then there must exist at least one
tetrahedron (called crossing tetrahedra) in D2 whose interior intersect with σ.
The set of crossing tetrahedra ofΩ forms a cavity C inside the space ofD2. The
boundaries of C are faces in D2. The sub-routine RemeshCavity presented
in [11] replaces the set of crossing tetrahedra by a set of new tetrahedra
conforming to both the boundaries of C and Ω. This process needs no Steiner
points and D2 is updated into a new CDT conforming to Ω.

Facets with not exactly co-planar vertices. In this case, there are two
types of inconsistencies: (1) the vertices of X ′ may not agree on a unique 2D
CDT of a facet F , and (2) even they agree on a unique 2D CDT, it may not
be the current triangulation of F . Type-(2) was due to the pre-computation
of the facet CDT assumes that the vertices of F are co-planar. To avoid these
inconsistencies in advance would need expensive computations. The proposed
algorithm try to handle them during the execution of the algorithm.

A type-(2) inconsistency is detected when we found no crossing tetrahe-
dron for a missing region Ω. It implies that Ω can be re-meshed by a set of
faces in D2. The RemeshRegion sub-routine searches the set of faces in D2

conforming to Ω and replaces the old set of subfaces in Ω by the new set. As a
result, the facet triangulation has been corrected by the constrained Delaunay
faces of D2. This process needs no Steiner points.

The type-(1) inconsistency is difficult to be detected earlier. It could be
signaled when the RemeshCavity is failed to recover Ω. A typical failure
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caused by this inconsistency is that one found that a quadrilateral abcd in Ω
can not be recovered since the two triangulations of abcd in the two halfspaces
of Ω are not the same. This is due to the non-coplanarity of the quadrilateral
abcd. To resolve this case, Steiner points are added into Ω. We choose to
split an edge of one of the not recovered subfaces in Ω. This is done in the
RefineRegion sub-routine.

Note that by adding only one Steiner point may not be sufficient to achieve
a new CDT. For an example, if this point is inserted on a subsegment of X ′,
it may encroaches upon other subsegments of X ′. Therefore, some tetrahedra
containing these subsegments may not be constrained Delaunay anymore. A
solution to solve this problem is to continue the insertion of Steiner points
until no subsegment of X ′ is encroached. The RefineRegion sub-routine
may insert several Steiner points into D2, and update D2 into a new CDT
including these Steiner points.

2.2 Termination

The main challenge in the proof of the termination is the additions of Steiner
points in the facet recovery phase. A key lemma we need is: The RefineRe-
gion sub-routine returns a new CDT (with added Steiner points) of the set
of recovered subfaces. Note that this sub-routine repairs the edges of the facet
triangulations which are not constrained Delaunay in 3 dimensions. Once such
edges are removed (by Steiner points), the facet triangulations can be recov-
ered by either RemeshCavity or RemeshRegion. A complete proof of this
lemma is our future work.

3 Examples and Discussions

This algorithm has been implemented in the latest version of the program
TetGen [10] (version 1.4.3). An example is shown in Fig. 3. Comparing with
the old algorithm, this algorithm outperforms it in both of its robustness and
speed. Moreover, the new algorithm adds less Steiner points. One reason is
due to the number of segments of the input is reduced when adjacent not
exactly co-planar facets are merged into one facet.

In the future, the termination and correctness of this algorithm need to be
proven. The analysis of this algorithm is not complete yet. A number of ques-
tions arise: How to incrementally update a CDT? How many Steiner points
are needed in this process? A very interesting extension of this algorithm is
to consider a piecewise smooth complex [1] as input.
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Fig. 3. Example. Left: a input PLC containing non-coplanar facets. Middle: the
surface mesh of the generated CDT. Right: a cut view of the CDT.
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